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1 Introduction

Since option prices reflect investors’ expectation on the future movements of the underlying

asset price, risk measures implied in the cross-section of option prices across the strike prices

are considered to be informational superior to their historical counterparts. Many studies

investigate information content, dynamic properties and asset pricing implications of different

option implied risk measures, such as Black-Scholes implied volatility (BSIV, Black and

Scholes (1973)), model-free implied volatility, model-free implied skewness and model-free

implied kurtosis 1. For instance, several studies find implied volatility to be informationally

superior to the historical volatility of the underlying asset2. Neumann and Skiadopoulos

(2013) show that the dynamics of the higher order implied moments can be statistically

forecasted. DeMiguel et al (2013) present evidence that option-implied information can

improve the selection of mean-variance portfolios and the out-of-sample performance of the

portfolio.

Although the option implied risk measures have been shown to be informationally useful,

it is unclear whether these measures can actually represent the characteristics of the true

underlying risk neutral distribution, when the distribution deviates from the assumption of

the model which derives the measures. The most widely-used option implied risk measure,

the Black-Scholes implied volatility, is calculated from the Black-Scholes formula such that

the model is consistent with the option price observed in the market. Whereas the underlying

stock can have only one volatility for different strike prices, graphing B-S implied volatilities

against strike prices for a given expiry yields a skewed ”smile” instead of the flat surface.

Furthermore, Neumann and Skiadopoulos (2013) show that the risk neutral skewness calcu-

lated from S&P500 index options is consistently negative and the implied kurtosis is always

larger than 3 over from 1996 to 2010. Both evidence point to the fact that the empiri-

cal distribution observed in the financial market is inconsistent with the assumption in the

1Dennis and Mayhew (2002), Jiang and Tian (2005), Bali and Murray (2013), DeMiguel et al (2013), and

Neumann and Skiadopoulos (2014)
2See Day and Lewis (1992), Canina and Figlewski (1993), Lamoureux and Lastrapes (1993), Christensen

and Prabhala (1998), Fleming (1998), and Blair, Poon, and Taylor (2001). Busch, Christensen, and Nielsen

(2008) find evidence in bond, stock and exchange rate markets.
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Black-Scholes model that the asset return under the physical measure and the risk neutral

measure follows a lognormal distribution. When the risk neutral or the physical distribution

deviates from lognormal, the BS implied volatility may not be an accurate estimate of the

risk neutral volatility.

Unlike traditional notion of implied volatility, Britten-Jones and Neuberger (2000) and

Bakshi and Madan (2003) propose a model-free implied volatility (MFIV) which is indepen-

dent of option pricing models. It is derived entirely from no-arbitrage conditions and can

be considered as a linear combination of European call and put option prices with strikes

spanning the full range of possible values for the underlying asset at maturity. However, the

relationship only exactly holds under the diffusion assumption. Under the stochastic volatil-

ity and random jump (SVJ) model, Jiang and Tian (2005) show the truncation error and the

discretionary error of the MFIV. Although the estimation error is admissible under certain

conditions, it tends to be larger when the underlying distribution is more negatively skewed,

when the available number of options is limited and when the market is more volatile.

In this paper, we apply the principle of maximum entropy to estimate implied volatility

(ETIV) from option prices. There are several advantages of this method. First, this approach

inherits the merit in model-free method, which does not depend on any parametric model

and lets the data determine the shape of the distribution. Second, unlike the model-free

implied moments in Bakshi and Madan (2003), the proposed method does not require a large

number of options with strike prices covering the entire support of the return distribution.

Instead, this method can produce accurate estimates of option implied volatility with limited

number of options. Third, implied skewness (ETIS) and implied kurtosis (ETIK) can also

be estimated using this method. Last but not least, this method allows construction of

confidence intervals for the implied volatility, since a nonparametric analog of likelihood

ratio statistics proposed by Kitamura and Stutzer (1996) can be applied in our case.

We consider 4 scenarios of risk neutral distributions and different number of available

options to compare the performance of entropy method, model-free method and Black-Sholes

model in backing out option implied risk measures. We first calculate option prices by

numerical integration under different risk neutral distributions, and then calculate implied

moments using different methods. We find that when the risk neutral distribution deviates
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from lognormal distribution, with heavy tail and negative skewness, ETIV is closer to the

true value than BSIV and MFIV. When we reduce the number of available options or increase

the true volatility, the estimation error of MFIV becomes more salient while ETIV estimates

remain robust under different specifications. We also compare the performance of implied

skewness and implied kurtosis by ET (ETIS and ETIK) and by model free method (MFIS and

MFIK). We find that when the underlying risk neutral distribution deviates from lognormal,

all measures underestimate the risk neutral skewness and kurtosis, but ETIS and ETIK are

slightly closer to the true value than MFIS and MFIK. In addition, we provide the confidence

interval of ETIV and the coverage ratio under different distributions.

In the empirical study, we calculate the entropy-based implied moments and model-free

implied moments from S&P500 index options from 1996 to 2013. Moreover, we examine

the information content of ETIV, MFIV and BSIV in predicting realized volatility in the

next month. Our results suggest that ETIV subsumes all information in BSIV and historical

volatility and it has higher forecasting ability than MFIV. In the out-of-sample analysis,

ETIV continues to provide superior forecasts and performs the best in high volatility regime.

We also find evidence that MFIS and MFIK tend to underestimate the risk neutral skewness

and kurtosis.

Our approach is closely related to the application of the principle of maximum entropy

in Buchen and Kelly (1996), who find the distribution estimated by this method is able to

accurately fit a known density, given simulated option prices at different strikes. In this

paper, we conduct more comprehensive analysis on this method by considering more realistic

specifications and providing suggestions on how to apply the method empirically. In an

important departure from Buchen and Kelly (1996), we focus on the implied moments and

compare the estimation error and forecasting ability with their model-free counterparts and

provide confidence intervals for the implied volatility. This study is also related to Stuzter

(1996). Instead of pricing options using maximum entropy distribution, we conduct the

reverse procedure to back out information from option prices. Our contribution is three-fold.

First, we propose a new set of estimators for risk neutral volatility, skewness and kurtosis,

which are more accurate than their model-free counterparts in certain circumstances. Second,

to the best of our knowledge, this paper is the first to construct confidence intervals of implied
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volatility based on maximum entropy principle, from both the simulated data and traded

option data. Third, using market prices of S&P500 index options, we provide both in-sample

and out-of-sample evidence that ETIV has better forecast performance than other implied

volatility measures.

The remainder of the paper proceeds as follows. Section 2 illustrates the estimation of

option implied risk measures using maximum entropy principle. Section 3 compares accu-

racy of different implied moments estimator under different risk neutral distributions of the

underlying asset and shows the confidence interval for ETIV. The forecasting ability of infor-

mation content of different implied volatilities are investigated using nonoverlapping samples

in Section 4 and Section 5 concludes.

2 Estimation of option implied risk measures using maximum

entropy principle

In this section, we first introduce the maximum entropy principle in the context of option

pricing and then illustrate how to back out risk neutral distribution from option prices non-

parametrically. From the estimated risk neutral distribution, option implied risk measures,

i.e. volatility, skewness and kurtosis can be calculated accordingly. One striking feature

of this method is the ability to construct confidence intervals for these risk measures. The

details of constructing confidence intervals for implied volatility is explained in (2.2).

2.1 Maximum entropy principle in the context of risk neutral pricing

The absence of arbitrage guarantees the existence of a risk-neutral probability measure un-

der which the price of any security is the expectation of discounted payoffs. In the following

paragraphs we seek to characterize this probability measure. Thus all probabilistic state-

ments refer to risk-neutral probabilities rather than objective probabilities, unless otherwise

specified.

Let Xt be a random variable that represents the gross return of a stock at fixed expiry

time t in the future and S0 is the current price of the asset. The value of the call option with

strike price K at time 0 is the expectation of the discounted payoff at time t under the risk
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neutral measure Q:

C = EQ[max(S0Xt −K, 0)]/rt, (1)

where rt is the gross risk free rate from time 0 to t. In a discrete state setting, assume that

there are n possible states for Xt and q1, ..., qn are probabilities affiliated to states Xt1, ...Xtn.

For qi to present a valid density, we require qi > 0 and
∑n

i=1 qi = 1, i = 1, ..., n. Under the

risk neutral pricing framework, the prices of call options and put options are:

C =
n∑
i=1

qi(max(S0Xti −K, 0))/rt, P =
n∑
i=1

qi(max(K − S0Xti, 0))/rt. (2)

where C and P are the call and put option prices, qi is the risk neutral probability affiliated

to state Xti and K is the exercise price of the option.

Given the fact that the number of possible states is much larger than the number of

available options, it is not sufficient to uniquely determine the underlying distribution of the

asset. However, Buchen and Kelly (1996) show that if these option prices used to constrain

the distribution has maximum entropy, then a unique distribution is obtained. Since entropy

measures the amount of missing information, the maximum entropy distribution is the least

prejudiced compatible with the given constraints, in the sense that it is least committal with

respect to this missing information. From the viewpoint of statistical inference, there is

no reason to prefer any other distribution (Buchen and Kelly (1996)). The entropy of the

distribution of Xt is defined by:

`ET = −
n∑
i=1

qilog(qi). (3)

According to the principle of maximum entropy, we select the qi such that entropy of the

distribution is maximized subject to the constraints. The constraints are based on the risk

neutral pricing formula of call and put options:

C(j) =

n∑
i=1

qi(max(S0Xti −Kc(j), 0))/rt, j = 1, ..., k1 (4)

P (j) =

n∑
i=1

qi(max(Kp(j)− S0Xti, 0))/rt, j = 1, ..., k2 (5)

n∑
i=1

qi = 1, qi ≥ 0, k1 + k2 = k. (6)
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where k1 is the number of call option prices, k2 is the number of put option prices, and

Xt1, ...,Xtn are possible states of the gross stock return. It can be considered as a Lagrange

problem, in which we estimate the risk neutral probabilities (q1, ..., qn) given option prices

and possible states of the stock return. The value of (q1, ..., qn) that maximizes `ET under

the k constraints is also called the exponential tilting estimator and denoted by (q̂1, ..., q̂n).

To present the constraints in a concise manner, we express the first k constraints as:

n∑
i=1

qigj(Xti) = 0, j = 1, ...k. (7)

The Lagrange function associated with the constrained optimization problem can then be

formulated as:

L =

n∑
i=1

qilog(qi) + γ(

n∑
i=1

qi − 1) + λ′(

n∑
i=1

qig(Xti)), (8)

where γ ∈ R and λ ∈ Rm are Lagrange multipliers. g(Xti) is a k dimensional vector

[g1(Xti), ..., gk(Xti)]. It is straightforward to show that the first order conditions for L are

solved by:

q̂i =
exp(λ̂′g(Xti))∑n
i=1 exp(λ̂

′g(Xti))
, i = 1, ..., n (9)

(λ̂1, ..., λ̂k) = argmin
n∑
i=1

exp(λ′g(Xti)), (10)

where λj is Lagrange multiplier of the jth constraint. We can see that the estimated q̂i is

presented as a function of the Lagrange multipliers and the Lagrange multipliers can be solved

from minimizing a strictly convex function. Instead of estimating n unknown probabilities

(qi, ..., qn), we only have to obtain the estimates of k Lagrange multipliers. It can be easily

proved that a unique solution of λ̂j exists due to strict convexity of the function. In the

empirical analysis, we find that the convergence of λ̂j , j = 1, ..., k is fast and reliable.

Given the estimated risk neutral probabilities and associated possible states, the entropy
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based implied volatility (ETIV), skewness (ETIS) and kurtosis (ETIK) are calculated as:

ETIV = V Q =

√√√√ n∑
i=1

q̂i(log(Xti)− µQ)2, µQ =

n∑
i=1

q̂ilog(Xti) (11)

ETIS =
n∑
i=1

q̂i((log(Xti)− µQ)/V Q)3, (12)

ETIK =
n∑
i=1

q̂i((log(Xti)− µQ)/V Q)4. (13)

Note that when it refers to implied volatility, i.e implied volatility calculated by Black Scholes

model, it is based on continuous compounded stock returns, especially when one purpose of

this study is to compare BSIV with ETIV. Hence the three measures are calculated from

log(Xi) rather than Xi. In the empirical study, we specify the possible states Xt1, ...Xtn to

be a equally distant series. For instance, we assume the possible state of gross monthly stock

return to be 0.7 to 1.3 with step 0.001.

We note that entropy measure is one member in the Cressie-Read divergence family, which

is also called Kullback-Leibler divergence. Apart from that, entropy estimator is included

as a special case in a class of generalized empirical likelihood estimators. It can be argued

that other members in the family, i.e. empirical likelihood (EL) or Euclidean divergence,

may perform the same or even better because the estimators in the family share the common

structure and possess the same asymptotic variance. However, we find some advantages of

entropy measure compared to other measures in the simulation and empirical study. First,

unlike Euclidean estimators, entropy method performs robust to different specifications of

possible states. To be more specific, whether we simulate states from a certain distribution, or

enforce a equally distant series as states, the results of the estimated risk neutral distribution

do not change as long as the states cover the range of the strike prices, which means the

distribution is solely determined by the option prices rather than the given states. Second,

we prefer entropy to EL because EL’s implied probability exhibit questionable behavior,

by placing a large weight on a few extreme observations. Theorem 1 in Schennach (2007)

shows that under the unbounded moment conditions, the slightest amount of misspecification

can cause the first-order asymptotic properties of EL to degrade catastrophically. To back

out the risk neutral distribution, the distribution which generates the option prices and the
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given distribution of the stock return states typically do not coincide, which causes model

misspecification. In addition, when we construct confidence interval for implied volatility,

one of the constraint is unbounded. Under these circumstances, we are in favor of entropy

measure in this paper.

2.2 Confidence interval of entropy-based implied volatility

After estimating the risk neutral probabilities (qi, ..., qn), the option implied risk measures

ETIV , ETIS and ETIK can be easily calculated. A nice feature of entropy method is that

it facilitates the construction of confidence interval. Different from the Black-Scholes implied

volatility (BSIV) and model-free implied volatility (MFIV), likelihood-ratio based confidence

regions can be constructed for ETIV using likelihood-like ratio statistics. Suppose we wish

to construct tests of the following restrictions: H0 : V Q = V̂ Q, a nonparametric analog of

the parametric likelihood ratio statistics is proposed by Kitamura and Stutzer (1997):

LRT = 2n[logM(V̂ Q)− logM(V̂ Q
c )]

d−→ χ2
1 (14)

where M(V̂ Q) = 1
n

∑n
i=1 exp(λ̂

′g(Xi)), and λ̂ is the solution of the following problem:

(λ̂1, ..., λ̂k, λ̂k+1) =
1

n
argmin

n∑
i=1

exp(λ′g(Xti)), (15)

Note that there are k+1 constraints including the constraint V Q = V̂ Q. Since the likelihood-

like ratio test statistics obeys the chi-square distribution with 1 degree of freedom, the confi-

dence interval for ETIV can be constructed by moving the volatility constraint around the

null hypothesis until the difference between the unconstrained and constrained likelihood ra-

tio statistics is larger than χ2
1. To construct the confidence interval for ETIV , we implicitly

assume that the mean of the risk neutral distribution of the continuous compounded return

µQ is fixed when moving the constraint of V Q. It can be easily derived that if we include

at-the-money call and put option prices as constraints where Kc = Kp = S0, the mean of the

discrete stock return under the risk neutral measure is derived as:

n∑
i=1

qiXT i =
(Catm − Patm)rt + 1

S0
, (16)
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where Catm and Patm are at-the-money call and put option prices. To ease the computational

burden and to guarantee convergence of the problem, we make an approximation that µQ, the

mean of continuous log return under the risk neutral measure, is also fixed at
∑n

i=1 q̂ilog(XT i)

when we move the volatility constraint. In the simulation, we find that the means of the

discrete return and continuous return under the risk neutral return are indeed close with the

magnitude of 10−3.

3 Performance of entropy-based option implied risk measures

under different distributions

In this section, we compare the performance of entropy-based method, Black-Scholes model

and model-free method in backing out implied risk measures from option prices. Entropy-

based method is shown to be more accurate than Black-Scholes model and model-free method

under heavy tail and non-zero skewness cases.

To investigate the capability of entropy-based method to back out implied volatility from

option prices, we evaluate four different risk neutral distributions of the underlying continuous

returns. To begin with, we consider the case in Black-Scholes model that stock price follows

a geometric Brownian motion under the risk neutral measure:

dSt = rStdt+ σStdwt, (17)

where St is the stock price at time t, r is the risk-free rate, σ is the constant instantaneous

volatility of the process and dwt is the increment in a standard Wiener process. Under this

model, the risk neutral distribution of continuously compounded T-year returns ln(RT ) is

normally distributed:

ln(RT ) ∼ N((r − 1

2
σ2)T, σ2T ) (18)

We also consider the cases deviate when the continuous returns under the risk neutral

measure follow a Student t distribution or Skewed Student t distribution. Skewed Student t

distribution (skewt(η, λ)) suggested in Hansen (1994) has a mean of zero and a unit variance

with degree of freedom η and skewness parameter λ. We consider two skew-t distribution
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with η = 5, λ = −0.3 and η = 5, λ = −0.7. The former is slightly asymmetric and the

latter one is more negatively skewed. The continuously compounded T-year return ln(RT )

is distributed as:

ln(RT ) ∼ (r − 1

2
σ2)T + σ

√
T skewt(η, λ). (19)

The call and put option prices with strike price K and maturity T are calculated by numerical

integration:

C(K,T ) =

∫ ∞
K/S0

(S0RT −K)f(RT )dRT /rT (20)

P (K,T ) =

∫ K/S0

0
(K − S0RT )f(RT )dRT /rT (21)

where f(RT ) is the density function of RT . The density function of log-skew t distribution is

provided in the appendix. We specify the mean of the risk neutral distribution as (r− 1
2σ

2)T

to ensure that the expectation of RT is erT under the risk neutral measure. This relation

holds exactly for log-normal distribution and approximately for the log-skewed t distribution.

The calculation of option prices employs annual risk-free rate r of 5%, annual volatility

σ of 20% (40%) and initial stock price S0 equal to 100. We calculate the call and put option

prices using numerical integration for several moneyness and 5 maturities from one month

to a year. Following Bakshi and Madan (2003), we only consider out-of-the money options

and at-the-money options due to the liquidity reason in the option market. Moreover, in-the-

money call and put option prices can be derived from put-call parity under the no arbitrage

condition and hence the information in them does not add much value in simulation. We

also consider different number of available options: call and put options with 7 or 3 pairs

of strike prices. In the first case, we specify different set of strike prices to capture similar

portion of the distribution for different maturities. In the second case, we reduce the number

of available options and keep the strike prices constant for different maturities. The strike

prices are presented in table 1 and 2 and the calculated option prices in each moneyness and

maturity category under different distributions are reported in table 3 and 4.

Following the procedure illustrated in Section 2, we calculate ETIV, ETIS and ETIK

using different pairs of options. To evaluate the performance of ETIV, we compare with
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Black-Scholes implied volatility (BSIV) and model-free implied volatility (MFIV) proposed

by Bakish and Madan (2003):

MFIV = EQ[R2
T ] = erT

∫ ∞
S

2(1− ln[KS0
])

K2
C(K,T )dK + erT

∫ S

0

2(1 + ln[S0
K ])

K2
P (K,T )dK

(22)

In the discrete setting, the measure can be approximated as:

EQ[R2
T ] ≈ erT

m∑
i=1

2(1− ln[Ki
S ])

K2
i

C(Ki, T )∆K + erT
n∑

j=m+1

2(1 + ln[ SKj
])

K2
j

P (Kj , T )∆K (23)

where K1, ...,Km > S, Km+1, ...,Kn < S and ∆K = (Kmax −Kmin)/(n+ 1). Given limited

number of options, we apply curve-fitting method to implied volatilities. Option prices are

first translated into implied volatilities using the BS model. A smooth function is then fitted

to the implied volatilities. The BS model is then used again to translate the extracted implied

volatilities into call prices. Following Bates (1991) and Jiang and Tian (2005), we use cubic

spines in the curve-fitting. For options with strike prices beyond the available range, we use

the end-point implied volatility to extrapolate their option values.

To be comparable with ETIV and MFIV, BSIV estimates are calculated as the average

of Black-sholes implied volatilities from all options. We report different IV estimators in

different specifications in table 5 to table 8. The first column in table 5 represents four

distributions and the second column shows different method. From table 5, we find that

when the discrete return follows normal distribution, both BSIV and MFIV are the same

as true value, while ETIV has small error when the maturity increases. However, when the

underlying distribution exhibits heavy tail, Black Scholes formula cannot produce unbiased

estimates of implied volatility. When the underlying distribution becomes more negative

skewed, the estimates of BSIV becomes further away from the true value. MFIV performs

better than BSIV under the four distributions, but the estimation error increases when the

underlying distribution becomes more heavy tail and negatively skewed. When the underlying

distribution becomes heavy tailed and negatively skewed, ETIV estimates are closer to the

true value than both BSIV and MFIV. When we decrease the available number of options

(Table 6 and 8) or increase the true volatility from 0.2 to 0.4 (Table 7 and 8), the advantage

of ETIV compared to MFIV becomes more evident. The percentage error of MFIV under
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the skewt(5,−0.7) distribution increases from 2% in Table 5 to 11% in Table 8 because

the truncation error and extrapolation error increases. However, percentage error of ETIV

estimates remain relatively constant around 3% across different specifications.

Table 9 shows the coverage rate of ET confidence interval under 4 distributions. We

present results for true volatility equal to 0.2 in the upper panel and 0.4 in the lower panel. To

be more specific, we simulate 10000 states from the true distribution for 100 times, construct

the confidence interval for the estimated implied volatility and see how many time the true

volatility falls in the interval. We note that the higher moments, especially kurtosis of the

simulated sample is far from true value in many simulations when the true distribution exhibit

heavy tail. The reason is that sample kurtosis is very sensitive to the extreme observations

and when the extreme observations are not realized in simulation sample, sample kurtosis

is downward biased. To alleviate the bias, we only consider the simulations with kurtosis

higher than 80% of the true kurtosis. From table 9, we find that the coverage rates of the

confidence interval are close to the given confidence levels under the four distributions.

We also compare the performance of implied skewness and kurtosis calculated by model-

free and maximum entropy method in table 10 and table 11. The formulas to calculate

model-free implied skewness (MFIS) and kurtosis (MFIK) are provided in the appendix.

From table 10 and 11, we see that when the underlying distribution is normal, MFIS and

MFIK produce the correct estimates for risk neutral skewness and kurtosis, since the model-

free moments are derived based on diffusion assumption. In this case, ETIS and ETIK are also

close to the true values of skewness and kurtosis. When the underlying distribution becomes

heavy tailed and negatively skewed, both of the two methods underestimate the skewness

and kurtosis. In almost all cases when the underlying distribution deviates from normal,

entropy method produces slightly more accurate estimates for skewness and kurtosis. It can

be difficult to get accurate estimates for higher order moment because they are sensitive to

tail observations and we do not give far-out-of-the-money call and put option prices. In the

real-life option market, the liquidity of far-out-of-money options is also questionable except

during the crisis period when the investors feel strong need to hedge the potential risks. To

analyze how to further improve the estimation accuracy of higher order risk neutral moments

is beyond the range of the current paper. This is also the reason we only provide confidence
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interval for ETIV. Confidence interval for ETIS and ETIK can be constructed when we are

able to estimate higher moments with higher accuracy.

In the procedure of estimating the option implied moments by maximum entropy method,

risk neutral probabilities p̂i, i = 1, ..., n, serve as an intermediate product, which allows us

to compare the estimated density and the original distribution. We compare the histograms

of simulated distribution (blue bars) and the distribution produced by maximum entropy

method (red lines) in Figure 1. The estimated risk neutral densities in these figures are

estimated from 14 options with one year maturity. Option prices with different moneyness

as moment conditions essentially provide information on different parts of the distribution.

For instance, out-of-the-money call option (Kc/S = 1.15) and out-of-money put option con-

straints (Kc/S = 0.85) restrict the right tail and the left tail of the risk neutral distribution.

The figures show that risk neutral density estimated by maximum entropy method matches

with simulated data both in the normal and the two skew-t cases quite well.

To conclude, we compare different method in estimating option implied risk measures in

this section. Results show that maximum entropy method provides more accurate estimates

of option implied volatility than Black-Scholes model and model-free method. The implied

skewness and kurtosis estimated by maximum entropy also perform slightly better than that

calculated by model-free method.

4 Empirical Analysis on S&P500 index option

In this section, we conduct our empirical analysis using the S&P500 index option traded in

Chicago Board Options Exchange (CBOE). We estimate implied volatility, implied skewness

and implied kurtosis using maximum entropy method and model-free method. We also

investigate the predictive power of ETIV, BSIV, MFIV and VIX on realized volatility of

S&P500 index returns in the next month.

4.1 Data

Our sample period covers from January 1996 to August 2013. We get the S&P500 index price

data from The Center for Research in Security Prices (CRSP) database. We obtain S&P500
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index options data From Ivy DB database of OptionMetrics. Continuously-compounded zero-

coupon interest rates are also obtained from OptionMetrics as a proxy for the risk free rate.

From Chicago Board Options Exchange (CBOE), we get daily levels of the newly calculated

VIX index and match with trading days which have option prices with one month expiration.

Although the CBOE changed the methodology for calculating the VIX in September 2003,

they have backdated the new index using the historical option prices.

In this section, our analysis is conducted based on call and put option prices on S&P500

index with 30 days expiration. We choose one month maturity because the options with one

month to expire are more actively traded than other maturities and the simulation study in

section 2 shows that the estimation error is smaller for options with shorter time to maturity.

From 1996 to 2006, only one date is available in a month with traded option data with 30 days

to expire. After that, there are several dates in one month. Since the purpose of this study

is to predict the volatility of S&P500 index return in the next month, we select one date in

each month from 2006 to 2013, with 210 dates in total. Midpoints of the bid-ask spread are

used to calculate the option implied risk measures instead of trade prices. Jackwerth (2000)

demonstrates that measurement of risk neutral distribution is not sensitive to the existence

of spreads.

In Table 12 and Table 13. we present the descriptive statistics of S&P500 index call

options and put options with moneyness from 0.85 to 1.15. We apply several filters to select

the options. First, option quotes less than 3/8 are excluded from the sample. These prices

may not reflect true option value due to proximity to tick size. Second, options with zero

open interest are excluded from sample due to liquidity reason. Third, following Ait-Sahalia

and Lo (1998) and Bakshi and Madan (2003), we exclude in-the-money options. From the

tables, we can see that for call options, the number of options and trading volume decrease

with moneyness, whereas the pattern is not obvious for put options.

In the empirical study, we also consider estimation of option implied risk measures from

different number of available options. To be comparable with the simulation, we first consider

case A when we select call options with moneyness close to: 1.15, 1.125, 1.1, 1.075, 1.05, 1.025,

1, and put options with moneyness closest to 0.85, 0.875, 0.9, 0.925, 0.95, 0.975, 1. Then we

calculate model-free and entropy-based implied moments based on the available option prices.
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To make full use of the model-free method, we consider case B when we use all remaining

option prices after applying the filters to calculate model-free implied moments (MFIV, MFIS,

MFIK). However, when a large number of constraints are included in the entropy approach,

strong correlation between moment conditions may cause the Jacobian matrix for calculating

Lagrange multipliers to be ill conditioned (Buchen and Kelly (1996)). To solve the problem,

we select options with strike prices not too close to each other: moneyness of call options

closest to 1.5, 1.4, 1.3, 1.2, 1.175, 1.15, 1.125, 1.1, 1.075, 1.05, 1.025, 1, and moneyness of

put options closest to 0.5, 0.6, 0.7, 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95, 0.975, 1.

For each selected trading day, we estimate the model-free and entropy-based implied mo-

ments. For BSIV, we calculate the mean of the Black-Scholes implied volatility using all

available option prices. While option implied volatilities represent ex-ante volatility forecast,

we also calculate the ex-post return volatility RVD over each option’s life. Following Chris-

tensen and Prabhala (1998), Christensen, Hansen and Probhala (2001) and Jiang and Tian

(2005), we use monthly nonoverlapping samples to avoid the telescoping overlap problem

which may render the diagnostic statistics in the regression analysis invalid. The RVD is

computed as the sample standard deviation of the daily index returns over the remaining life

of the option:

σt =

√√√√ 1

τt

τt∑
k=1

(rt,k − r̄t)2, (24)

where τt is the number of the days to expiration, r̄t = 1
τt

∑τt
k=1 rt,k, and rt,k is the log index

return on day k of month t. All of the volatility measures are expressed in annual terms to

facilitate interpretation. Finally, to analyze the predictability of variance risk premium on

future stock return, we calculate S&P500 index monthly return and match with the option

data.

4.2 The information content of entropy-based implied volatility (ETIV)

We show our empirical findings in this section. We first review the basic statistical properties

of the various volatility measures and then investigate their relative performance as predictors

of the subsequent realized volatility of the underlying S&P500 index. We also analyze the

predictability of different measure of variance risk premium on future index return.
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Table 14 reports descriptive statistics of five measures of volatility: RVD, VIX, BSIV,

MFIV and ETIV, two measures of implied skewness: MFIS and ETIS, and two measures

of implied kurtosis: MFIK and ETIK calculated from 7 pairs of options. Table 15 shows

the correlation matrix of these measures. We first note that the mean of the four implied

volatility measure, VIX, BSIV, MFIV and ETIV, are compatible with each other from 20.9%

to 21.9%. All of them exceed the mean of realized volatility measure RND by about 24%,

which shows evidence of volatility risk premium. Second, the four implied volatility measures

are highly correlated with each other, with correlation coefficients above 0.99. Compared to

the correlation with BSIV, VIX is more correlated with MFIV and ETIV, since the construc-

tion manner of the three shares the same feature which does not depend on any parametric

assumptions. Third, the two measures of implied skewness and kurtosis are correlated with

coefficients 0.75 and 0.48, but the absolute level of ETIS and ETIK are higher than that of

MFIS and MFIK by 43.7% and 33.4%, which confirms the results in Section 2 that model-

free method tends to underestimate the absolute level of risk neutral skewness and kurtosis.

From Figure 5, we can see the pattern more clearly: when implied skewness becomes lower

around 1999, 2002 and 2011, the underestimation of MFIS and MFIK becomes more serious.

Fourth, the implied kurtosis are negatively correlated with various volatility measures and

skewness measures.

4.2.1 Forecasting Stock Market Volatility

Prior research has extensively analyzed the information content of the BSIV on the future

realized volatility. While early studies produce mixed results, recent studies seem to agree the

informational superiority of BSIV compared to historical volatility. Since MFIV is considered

to be a better estimate of risk neutral volatility than BSIV, Jiang and Tian (2005) investigate

the information content of MFIV and find it subsumes all information contained in BSIV.

Although we claim that ETIV is a more accurate estimator of risk neutral volatility when

the underlying distribution possesses heavy tail and skewness, it does not necessarily infer

that ETIV has higher predictive power than BSIV or MFIV. If most investors form their

expectations of future volatility based on simple Black-Scholes model, BSIV can be a better

forecast of future volatility. Since the forecast ability of ETIV is not clear, one aim of this
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paper is to assess the predictive power of ETIV, compared to alternative risk neutral volatility

estimators.

To nest previous research within our framework, we compare four competing volatility

forecasts: BSIV, MFIV, VIX and ETIV. To explore the predictive ability of different candi-

date volatility measures, we first include each of them separately within an in-sample forecast

regression. Denote the ex-post realized volatility for month t+1 as RVt+1 and the ith volatil-

ity predictor in a set of different predictors I = RVt, BSIVt,MFIVt, ETIVt, V IXt as xi,t,

the regressions take the form:

RVt+1 = αi + βixi,t + εi,t+1, (25)

where unbiased forecasts are subject to the constraints that αi = 0 and βi = 1. In addition,

the regression coefficient of determination R2 captures the proportion of total variation in the

ex-post realized volatility explained by the predictors. We also employ encompassing regres-

sions to investigate whether one predictor candidate subsumes the information in another.

The regression is specified as follows:

RVt+1 = α+ βRVRVt + βBSBSIVt + βMFMFIVt + βETETIVt + εt, (26)

where the lagged realized volatility RVt is our proxy for historical volatility. Following Chris-

tensen and Prabhala (1998), we adopt the realized volatility over 30 calendar days proceeding

the current observation dates as the lagged realized volatility.

Table 16 and 18 summarizes the volatility regression results from both univariate and

encompassing regressions for 7 pairs of options and all options in case A and B. From in-

sample estimation results of univariate regressions in table 16, we note that BSIV forecasts

future volatility slightly better than both MFIV and ETIV, when we only use 7 pairs of

options to calculate them. In addition, MFIV and ETIV do not subsume all information in

historical volatility (RVD) or BSIV. However, when we use options with strike prices span

more portion of the distribution in case B, we can see some notable difference exist in the

univariate regressions across model specifications and volatility measures. For instance, the

adjusted R2 is the highest for ETIV regression while it is the lowest for lagged realized

volatility regression. The evidence suggests that, among all the volatility measures, ETIV
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explains the most variation in the future monthly volatility. It is also worth noting that

even MFIV uses more options as inputs, the adjusted R2 of ETIV regressions is still slightly

higher than MFIV, while BSIV contains the least information among all the implied volatility

measures. The decreased R2 of BSIV univariate regression from table 16 to table 18 also

indicates that, BSIV is unable to integrate the information in large number of cross-sectional

option prices. The higher adjusted R2 of ETIV regression may suggest that the maximum

entropy method can better utilize the information contained in option prices.

The encompassing regressions in table 18 provide additional insights. First, both MFIV

and ETIV subsume the information in lagged realized volatility, while BSIV does not. If

the BSIV subsumes all the information in lagged realized volatility, we should expect the

coefficient of lagged realized volatility to be statistically insignificant when these two measures

are included in the regression. As shown in table 18, the coefficient of lagged realized volatility

is not significant at 5% level in the two specifications. This finding is consistent with previous

studies (e.g. Christensen and Prabhala (1998) and Jiang and Tian (2005)). Second, MFIV

and ETIV subsume all information in BSIV. When ETIV or MFIV are combined with BSIV in

the regression, the coefficient of BSIV is not statistically significant at 5% and the inclusion

of BSIV does not improve adjusted R2. Third, ETIV explains more variations in future

realized volatility than MFIV. The highest in-sample fit obtained when ETIV is included in

the predictive regressions. When the three different volatility measures are all included in

the last regression, only the coefficient of ETIV is significantly different from zero. Although

the correlation between the three measures distort the reliability of t statistics, the opposite

signs of coefficients of MFIV and ETIV indicate the dominant role of ETIV in explaining

variations of future volatility.

We then turn to the out-of-sample evidence reported in right columns of table 16 and

table 18. The out-of-sample results in table 16 and 18 do not differ much, while table 18

provides more evident results on the superiority of ETIV in out-of-sample performance. We

use rolling window of the previous 100 observations as estimation sample and the remaining

ones as prediction sample. The overall measure of forecast performance is the percentage
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RMSE. If we denote ŷt as a forecast for yt, it is formally defined as,

RMSE =

√
E[(ŷ − y)2]

E[y2]
/100

The column labeled “All days” covers the full out-of-sample period. The relative ranking is

consistent with the in-sample results. From the univariate regressions in table 18, we find that

ETIV continues to provide the best performance among other volatility measures. Forecast

precision deteriorate monotonically as we move to MFIV, VIX, BSIV and RVD. Moreover, the

RMSEs of ETIV (0.179 and 0.145) in a univariate regression in the two tables are smaller than

other combinations of volatility measure, which suggest the forecast superiority of ETIV. The

last three columns in table 10 and table 11 report out-of-sample RMSE of three subsamples.

We divide the monthly forecast of future volatility into three subsamples by sorting the

corresponding BSIV measure in ascending order. Hence, RMSE results for monthly forecasts

with the lowest third BSIV are reported in the “Low” column, results for the next third are

in the “Medium” column and for the last third with the highest BSIV in the “High” column.

First, from the univariate regressions results, we note that ETIV performs better than other

volatility measure in the high volatility regime, while all measures perform comparably in the

low volatility regime. Second, the encompassing regressions largely confirm the observations

drawn from the univariate out-of-sample predictive regressions. When RVD is combined with

BSIV, MSIV and MFIV, the rank of out-of-sample performance is the same as in univariate

regressions. In addition, once ETIV is included in the regression, the addition of either RVD,

BSIV or MFIV does not improve the out-of-sample performance. It is notable that although

the combination of RVD, MFIV and ETIV provides the best in-sample fit, it has much worse

out-of-sample predictive power than other combinations. Compare table 16 and table 18, we

find that the forecasting performance of MFIV and ETIV are improved using more option

prices, both in-sample and out-of-sample. The superiority of ETIV compared to MFIV and

BSIV arises when we try to explore all information in the available index option data.

4.2.2 Forecasting Stock Market Returns

At last, we investigate the relation between variance risk premium and future market return.

The theoretical model in Bollerslev, Tauchen and Zhou (2009) suggest that variance risk
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premium (VRP) may serve as a useful predictor for the future returns. VRP is defined as the

difference between current return variation and the markets risk-neutral expectation of future

return variation. In this paper, we intend to compare the performance of VRP using different

measure of risk neutral variance. To explore the predictability of different VRP measures, we

use univariate regression to examine the in-sample and out-of-sample performance. Denote

the ex-post return for month t + 1 as Rt+1 and the ith VRP measure in a set of different

predictors I = V RPBS,t, V RPMF,t, V RPET,t as xi,t, the regressions take the form:

Rt+1 = αi + βixi,t + εi,t+1, (27)

where V RPBS,t is defined as the difference between the Black-Scholes implied varianceBSIV 2
t

and realized variance in the past month RVD2
t . V RPMF,t and V RPET,t are calculated based

on MFIVt and ETIVt.

Table 17 and 19 report regression result of predicting future monthly market returns.

The VRP measures are calculated based on 7 pairs of options and all available options

respectively. In all regressions, the t-statistics for testing the estimated slope coefficient

associated with the VRP measures greater than zero exceeds the one-sided 2.5% significance

level. Furthermore, both tables show that the V RPET explains more variations in future

monthly market return than V RPBS and V RPMF and performs better in out-of-sample

setup. The out-of-sample RMSE is the lowest for V RPET in the high volatility regime,

which also support our results in simulation that ETIV is a more accurate estimator of risk

neutral volatility when the underlying distribution has higher volatility. Compare table 17

with table 19, we find that increasing the number of options to calculate VRP measures

enhances the predictability of VRP. The improvement of V RPBS and V RPMF is larger than

V RPET , whereas the performance of V RPET almost stays unchanged using different set of

options. In addition, the adjusted R2 reported in table 17 and 19 for V RPET regression is

7.4%, which is much larger than 1.07% reported in Bollerslev, Tauchen and Zhou (2009). We

explain the improvement as a result of ETIV as a more accurate estimator of risk-neutral

expectation of future return variation.
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5 Conclusion

This paper provides the first comprehensive investigation on option implied moments esti-

mated by principle of maximum entropy. The method estimates the risk neutral distribution

of an asset, given a set of option prices at different strikes. Implied volatility (ETIV), im-

plied skewness (ETIS) and implied kurtosis (ETIK), can then be calculated based on the

estimated risk neutral distribution. Compared to parametric methods such as Black Scholes

(BS) model, the proposed method does not depend on any parametric assumptions. Com-

pared to model-free implied volatility, such as that in Bakshi and Madan (2003), this method

does not require options with exercise prices spanning the full range of possible values for

the underlying asset at expiry. Instead, the entropy method combines the advantages in

model-free and parametric methods: on one hand, it can aggregate information in options

with different strikes and produce accurate estimates using only limit number of options; on

the other hand, constructing confidence interval for option implied moments is also possi-

ble since a nonparametric analog of likelihood ratio statistics follows chi-square distribution

under certain assumptions.

We first investigate the performance of maximum entropy method when the risk neutral

distribution of the underlying log return follows normal, student t, and skewed student t

distributions. Given certain risk neutral distributions, put and call options are calculated by

numerical integration, and implied moments are then backed out by Black Scholes model,

model-free method and ET method. We find that ETIV has less estimation error than BSIV

and MFIV when the underlying distribution shows heavy tail and non-zero skewness. With

less number of available options or under higher true volatility level, the accuracy of ETIV

remains robust while the percentage error of MFIV becomes larger. The implied skewness

and kurtosis estimated by ET (ETIS and ETIK) are also slightly more accurate than their

counterparts calculated by model-free methods (MFIS and MFIK). In addition, a confidence

interval can be constructed for ETIV, which coverage is close to the correct confidence level

under different distributions. The complete distributions estimated by ET method also match

with the given distribution to a high degree of accuracy.

Using S&P500 index options, we empirically test the information content of ETIV on
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future monthly realized volatility and return. Our in-sample regression results using all avail-

able options support the hypothesis that ETIV subsumes all information in BSIV and lagged

realized volatility and has higher predictive power on future monthly volatility than MFIV.

In the out-of-sample analysis, ETIV continues to provide superior forecasts and performs

the best in high volatility regime. When forecasting future monthly return, entropy-based

variance risk premium continues to explain more variations in future monthly return and

performs better in the out-of-sample setup, using different number of option prices. To con-

clude, empirical evidence supports our results in simulation that ETIV is a more accurate

estimator of risk neutral expectation of future return variation. Further improvement of the

estimation accuracy of option implied skewness and kurtosis should be an important next

step of further research.
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6 Appendix

6.1 Density function of log Skewed Student’s t distribution

Hansen (1994) suggests a Skewed Student’s t distribution to allow for skewness in Student’s

t distribution. The density function of Skewed Student’s t distribution is:

f(x) =


bc(1 + 1

η−2( bx+a1−λ )2)−(1+η)/2 if x < −a/b,

bc(1 + 1
η−2( bx+a1+λ )2)−(1+η)/2 if x ≥ −a/b,

where 2 < η <∞, and −1 < λ < 1. The constants a, b and c are given by:

a = 4λc(
η − 2

η − 1
), b2 = 1 + 3λ2 − a2, and c =

Γ(η+1
2 )√

π(η − 2)Γ(η/2)
.

In the second and the third case, we model the continuous compounded return X as skewed

Student’s t distribution. Assume the density function of X is f(x), then the density function

of the discrete return Y = eX can be expressed as:

g(y) = f(ln y)
1

y
=


b
y c(1 + 1

η−2( b ln y+a1−λ )2)−(1+η)/2 if ln y < −a/b,

b
y c(1 + 1

η−2( b ln y+a1+λ )2)−(1+η)/2 if ln y ≥ −a/b.

6.2 Calculation of Model-free implied moments

The calculation of model-free option implied moments in this paper follows Bakshi, Kapadia

and Madan (2003). Let the t-period continuous compounded return be given by: Rt =

ln[St] − ln[S0]. The fair value of the volatility contract, the cubic contract and the quartic

contract at time 0 are:

V (0, t) = EQ[e−rtR2
t ], W (0, t) = EQ[e−rtR3

t ], and X(0, t) = EQ[e−rtR4
t ]

To simplify the notations, we ignore the time period information in the parenthesis in the

following equations, for instanceV = V (0, t). Under the risk neutral measure, the following

skewness and kurtosis contract prices can be recovered by the out-of-the-money European

call and put option prices. The t-period risk neutral return skewness, SKEW is given by:

SKEW =
ertW − 3µertV + 2µ3

(ertV − µ2)3/2
.
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The t-period risk neutral kurtosis, KURT is:

KURT =
ertX − 4µertW + 6ertµ2V − 3µ4

ertV − µ
,

where µ, V , W and X can be replicated by the option prices:

µ = EQ(ln[
St
S0

]) = ert(1− e−rt − 1

2
V − 1

6
W − 1

24
X),

V =

∫ ∞
S

2(1− ln[KS0
])

K2
C(K, t)dK +

∫ S

0

2(1 + ln[S0
K ])

K2
P (K, t)dK,

W =

∫ ∞
S

6 ln[KS ]− 3(ln[KS0
])2

K2
C(K, t)dK −

∫ S

0

6 ln[KS ] + 3(ln[S0
K ])2

K2
P (K, t)dK,

X =

∫ ∞
S

12(ln[KS ])2 − 4(ln[KS0
])3

K2
C(K, t)dK −

∫ S

0

12(ln[KS )2] + 4(ln[S0
K ])3

K2
P (K, t)dK.
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Table 1: 7 pairs of strike prices (K/S0) for different maturities

1 2 3 4 5 6 7

T = 1/12 call 1.15 1.125 1.1 1.075 1.05 1.025 1

put 0.85 0.875 0.9 0.925 0.95 0.975 1

T = 1/6 call 1.2 1.15 1.125 1.1 1.075 1.025 1

put 0.83 0.85 0.875 0.9 0.925 0.975 1

T = 1/4 call 1.27 1.2 1.15 1.1 1.075 1.05 1

put 0.8 0.83 0.85 0.9 0.925 0.95 1

T = 1/2 call 1.4 1.3 1.2 1.15 1.1 1.05 1

put 0.75 0.8 0.83 0.85 0.9 0.95 1

T = 1 call 1.65 1.5 1.35 1.2 1.1 1.05 1

put 0.65 0.7 0.75 0.8 0.9 0.95 1

Table 2: 5 pairs of strike prices (K/S0) for maturities from T = 1/12 to T = 1

1 2 3

call 1.05 1.025 1

put 0.95 0.975 1

The upper table reports the 7 pairs of strike prices (K/S0) of call and put options we use in the

calculation of BS, MF and ET implied volatility. The range of strike prices is adjusted by different

maturities. The upper and lower bounds of the strike prices are determined by exp(Φ−1(0.01)σt +

µt),exp(Φ
−1(0.99)σt + µt), where Φ−1(x) is the inverse cumulative distribution function of the

standard normal distribution. The lower table reports 3 pairs of strike prices (K/S0) of call and

put options which do not change according to different maturities.
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Table 3: Call option prices under different risk neutral distributions

Kc/S Distribution Time to Expiration (Years)

1/12 1/6 1/4 1/2 1

1 lognormal 0.020 0.053 0.045 0.080 0.360

t 0.078 0.153 0.169 0.290 0.767

skewt(5,-0.3) 0.020 0.042 0.044 0.076 0.244

skewt(5,-0.7) 0.000 0.001 0.001 0.001 0.005

2 lognormal 0.057 0.198 0.200 0.306 0.785

t 0.125 0.298 0.336 0.532 1.147

skewt(5,-0.3) 0.038 0.110 0.116 0.183 0.453

skewt(5,-0.7) 0.001 0.004 0.003 0.005 0.018

3 lognormal 0.148 0.360 0.514 1.023 1.640

t 0.210 0.432 0.599 1.120 1.833

skewt(5,-0.3) 0.080 0.191 0.275 0.571 0.951

skewt(5,-0.7) 0.003 0.012 0.021 0.071 0.126

4 lognormal 0.349 0.626 1.191 1.762 3.247

t 0.373 0.644 1.139 1.710 3.130

skewt(5,-0.3) 0.188 0.350 0.736 1.101 2.212

skewt(5,-0.7) 0.022 0.060 0.293 0.426 1.166

5 lognormal 0.744 1.042 1.742 2.906 6.040

t 0.691 0.978 1.597 2.672 5.589

skewt(5,-0.3) 0.474 0.659 1.217 2.144 5.118

skewt(5,-0.7) 0.237 0.309 0.817 1.581 4.480

6 lognormal 1.435 2.524 2.478 4.582 8.021

t 1.292 2.293 2.245 4.200 7.484

skewt(5,-0.3) 1.146 2.149 1.960 3.946 7.406

skewt(5,-0.7) 1.002 1.994 1.670 3.625 7.011

7 lognormal 2.512 3.675 4.615 6.889 10.451

t 2.333 3.424 4.312 6.478 9.925

skewt(5,-0.3) 2.336 3.437 4.340 6.576 10.255

skewt(5,-0.7) 2.310 3.396 4.284 6.478 10.066

This table reports call option prices with different moneyness and maturity under different risk

neutral distributions. Risk neutral distributions of the continuously compounded stock returns

are simulated from normal and two skew-t distributions. Kc is the exercise price of the call option

and S is the current price of the stock. 27



Table 4: Put option prices under different risk neutral distributions

Kp/S Distribution Time to Expiration (Years)

1/12 1/6 1/4 1/2 1

1 lognormal 0.003 0.021 0.028 0.057 0.042

t 0.029 0.072 0.088 0.138 0.127

skewt(5,-0.3) 0.062 0.139 0.168 0.255 0.248

skewt(5,-0.7) 0.093 0.196 0.235 0.347 0.344

2 lognormal 0.015 0.049 0.079 0.199 0.126

t 0.054 0.109 0.149 0.280 0.227

skewt(5,-0.3) 0.105 0.195 0.260 0.457 0.403

skewt(5,-0.7) 0.149 0.264 0.345 0.580 0.529

3 lognormal 0.061 0.127 0.148 0.377 0.317

t 0.107 0.185 0.215 0.430 0.401

skewt(5,-0.3) 0.184 0.300 0.350 0.648 0.647

skewt(5,-0.7) 0.242 0.385 0.447 0.788 0.803

4 lognormal 0.193 0.287 0.552 0.554 0.687

t 0.222 0.318 0.543 0.571 0.702

skewt(5,-0.3) 0.329 0.466 0.740 0.816 1.024

skewt(5,-0.7) 0.402 0.564 0.859 0.963 1.203

5 lognormal 0.504 0.584 0.951 1.276 2.310

t 0.469 0.553 0.862 1.148 2.020

skewt(5,-0.3) 0.598 0.726 1.074 1.437 2.431

skewt(5,-0.7) 0.675 0.828 1.189 1.582 2.584

6 lognormal 1.106 1.816 1.534 2.527 3.713

t 0.979 1.610 1.352 2.218 3.253

skewt(5,-0.3) 1.086 1.733 1.549 2.470 3.624

skewt(5,-0.7) 1.137 1.780 1.641 2.556 3.694

7 lognormal 2.096 2.845 3.373 4.420 5.574

t 1.917 2.593 3.067 3.998 5.005

skewt(5,-0.3) 1.922 2.610 3.100 4.093 5.259

skewt(5,-0.7) 1.899 2.577 3.059 4.036 5.184

This table reportscall option prices with different moneyness and maturity under different risk

neutral distributions. Risk neutral distributions of the continuously compounded stock returns

are simulated from normal and two skew-t distributions. Kp is the exercise price of the put option

and S is the current price of the stock. 28



Table 5: Implied volatilities estimated from 7 pairs of options, σ = 0.2

Method 1/12 1/6 1/4 1/2 1

Normal BS 0.200 0.200 0.200 0.200 0.200

MF 0.200 0.200 0.200 0.200 0.200

ET 0.200 0.200 0.201 0.202 0.204

student t BS 0.211 0.199 0.195 0.190 0.188

MF 0.198 0.196 0.194 0.192 0.190

ET 0.199 0.198 0.197 0.197 0.197

skewt(5,-0.3) BS 0.206 0.196 0.192 0.190 0.191

MF 0.197 0.195 0.194 0.192 0.193

ET 0.198 0.197 0.197 0.198 0.200

skewt(5,-0.7) BS 0.195 0.186 0.184 0.184 0.188

MF 0.196 0.193 0.191 0.189 0.190

ET 0.197 0.196 0.195 0.196 0.193

This table reports the estimated implied volatility calculated from 7 pairs of option prices by

Black Sholes formula (BS), model-free method (MF) and maximum entropy method (ET) under

different risk neutral distributions. The true volatility is 0.2. In the first row, 1/12 to 1 means

options maturities from one month to a year. In the first column, ’skewt(5,-0.3)’ means Skewed

Student t distribution with degree of freedom 5 and skewness parameter -0.3; ’skewt(5,-0.7)’ means

Skewed Student t distribution with degree of freedom 5 and skewness parameter -0.7.

29



Table 6: Implied volatilities estimated from 3 pairs of options, σ = 0.2

Method 1/12 1/6 1/4 1/2 1

Normal BS 0.200 0.200 0.200 0.200 0.200

MF 0.200 0.200 0.200 0.200 0.200

ET 0.202 0.201 0.202 0.201 0.202

student t BS 0.192 0.193 0.192 0.193 0.192

MF 0.195 0.194 0.193 0.195 0.192

ET 0.196 0.196 0.196 0.197 0.197

skewt(5,-0.3) BS 0.192 0.190 0.188 0.191 0.193

MF 0.197 0.193 0.191 0.195 0.193

ET 0.196 0.196 0.196 0.197 0.199

skewt(5,-0.7) BS 0.187 0.180 0.177 0.180 0.183

MF 0.196 0.189 0.186 0.192 0.187

ET 0.193 0.193 0.193 0.194 0.196

This table reports the estimated implied volatility calculated from 3 pairs of option prices by

Black Sholes formula (BS), model-free method (MF) and maximum entropy method (ET) under

different risk neutral distributions. The true volatility is 0.2. In the first row, numbers from

1/12 to 1 represent options maturities from one month to a year. In the first column, ’skewt(5,-

0.3)’ means Skewed Student t distribution with degree of freedom 5 and skewness parameter

-0.3; ’skewt(5,-0.7)’ means Skewed Student t distribution with degree of freedom 5 and skewness

parameter -0.7.
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Table 7: Implied volatilities estimated from 7 pairs of options, σ = 0.4

Method 1/12 1/6 1/4 1/2 1

Normal BS 0.400 0.400 0.400 0.400 0.400

MF 0.400 0.400 0.400 0.400 0.400

ET 0.402 0.403 0.404 0.406 0.407

student t BS 0.385 0.383 0.384 0.386 0.392

MF 0.387 0.385 0.386 0.387 0.390

ET 0.393 0.394 0.395 0.397 0.401

skewt(5,-0.3) BS 0.374 0.369 0.368 0.365 0.366

MF 0.383 0.379 0.379 0.378 0.382

ET 0.391 0.390 0.391 0.394 0.399

skewt(5,-0.7) BS 0.350 0.345 0.341 0.334 0.331

MF 0.375 0.369 0.367 0.364 0.366

ET 0.384 0.383 0.384 0.385 0.389

This table reports the estimated implied volatility calculated from 7 pairs of option prices by

Black Sholes formula (BS), model-free method (MF) and maximum entropy method (ET) under

different risk neutral distributions. The true volatility is 0.4. In the first row, numbers from

1/12 to 1 represent options maturities from one month to a year. In the first column, ’skewt(5,-

0.3)’ means Skewed Student t distribution with degree of freedom 5 and skewness parameter

-0.3; ’skewt(5,-0.7)’ means Skewed Student t distribution with degree of freedom 5 and skewness

parameter -0.7.
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Table 8: Implied volatilities estimated from 3 pairs of options, σ = 0.4

Method 1/12 1/6 1/4 1/2 1

student t BS 0.373 0.375 0.376 0.379 0.386

MF 0.374 0.375 0.376 0.378 0.381

ET 0.393 0.394 0.397 0.400 0.406

skewt(5,-0.3) BS 0.368 0.364 0.361 0.361 0.363

MF 0.366 0.365 0.363 0.367 0.368

ET 0.391 0.391 0.393 0.396 0.404

skewt(5,-0.7) BS 0.359 0.348 0.341 0.338 0.334

MF 0.355 0.351 0.346 0.351 0.346

ET 0.387 0.384 0.384 0.387 0.393

This table reports the estimated implied volatility calculated from 3 pairs of option prices by

Black Sholes formula (BS), model-free method (MF) and maximum entropy method (ET) under

different risk neutral distributions. The true volatility is 0.4. In the first row, numbers from

1/12 to 1 represent options maturities from one month to a year. In the first column, ’skewt(5,-

0.3)’ means Skewed Student t distribution with degree of freedom 5 and skewness parameter

-0.3; ’skewt(5,-0.7)’ means Skewed Student t distribution with degree of freedom 5 and skewness

parameter -0.7.

Table 9: Coverage rate of ET confidence interval under different distributions

sigma normal t skewt1 skewt2

0.2 95% 91.21% 91.40% 92.30% 93.10%

90% 85.00% 85.50% 86.60% 92.30%

0.4 95% 92.39% 91.60% 93.40% 92.50%

90% 88.78% 86.70% 87.60% 84.50%

This table reports the coverage rate of confidence interval under four distributions. The upper

panel is for σ = 0.2 under 95% and 90% confidence levels and the lower panel is for σ = 0.4.
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Table 10: Implied skewness estimated by model-free method and entropy method

Method 1/12 1/6 1/4 1/2 1

Normal, skew=0 MF 0.000 0.000 0.000 0.000 0.000

ET 0.001 0.004 0.004 -0.013 -0.066

student t, skew=0 MF -0.021 -0.026 -0.026 -0.023 -0.013

ET -0.002 -0.008 -0.017 -0.048 -0.104

skewt(5,-0.3), skew= -1.23 MF -0.896 -0.781 -0.717 -0.606 -0.477

ET -0.917 -0.872 -0.857 -0.848 -0.850

skewt(5,-0.7), skew=-2.06 MF -1.479 -1.297 -1.196 -1.020 -0.799

ET -1.512 -1.433 -1.399 -1.360 -1.137

This table reports the estimated implied skewness calculated from 7 pairs of options by model-free

method (MF) and entropy method (ET). The first column shows different risk neutral distributions

for calculating option prices and their true skewness parameters. The first row represents five

maturities from 1 month to 1 year.
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Table 11: Implied kurtosis estimated by model-free method and entropy method

Method 1/12 1/6 1/4 1/2 1

normal, kurt=3 MF 3.005 3.005 3.005 3.005 3.005

ET 3.007 3.077 3.179 3.450 3.758

student t, kurt=9 MF 4.878 4.156 3.817 3.406 3.179

ET 5.254 4.898 4.724 4.525 4.456

skewt(5,-0.3), kurt=11.88 MF 5.402 4.496 4.075 3.562 3.259

ET 5.678 5.242 5.050 4.850 4.791

skewt(5,-0.7), kurt=17.54 MF 6.328 5.117 4.569 3.902 3.510

ET 6.577 6.016 5.789 5.553 4.696

This table reports the estimated implied kurtosis calculated from 7 pairs of options by model-free

method (MF) and entropy method (ET). The first column shows different risk neutral distributions

for calculating option prices and their true kurtosis parameters. The first row represents five

maturities from 1 month to 1 year.
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Table 12: Descriptive statistics of S&P500 call options with 1 month expiration

Kc/S 1 1.025 1.05 1.075 1.1 1.125 1.15

Mean 24.82 11.56 5.26 3.17 2.19 2.48 1.85

Variance 84.02 58.48 35.76 21.95 15.25 19.99 13.50

Skewness 1.05 1.30 3.03 4.36 4.89 3.78 3.86

Kurtosis 4.90 5.75 17.14 27.53 30.80 17.50 17.82

Maximum 7.69 1.94 0.40 0.38 0.38 0.38 0.38

Minimum 64.85 51.15 45.20 36.80 29.30 24.50 19.30

Average volume 4763.65 3265.00 2282.02 2030.98 1371.10 1229.62 1621.00

Average open interest 14338.16 16346.00 15054.36 14399.36 10743.60 13956.85 21618.22

obs. 204 206 193 139 96 41 32

This table presents the descriptive statistics of the S&P500 call options with 1 month expiration.

The first row shows different moneyness from at-of-the-money ( Kc/S = 1) to out-of-the-money

(Kc/S = 1.15). Kc is the exercise price of the call option and S is the current price of S&P500

index.
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Table 13: Descriptive statistics of S&P500 put options with 1 month expiration

Kp/S 0.85 0.875 0.9 0.925 0.95 0.975 1

Mean 2.36 2.91 4.04 5.90 9.07 14.72 24.23

Variance 10.92 14.59 21.08 32.16 49.06 70.67 85.75

Skewness 4.22 4.00 3.45 2.82 2.25 1.55 0.94

Kurtosis 25.45 23.76 19.25 14.51 10.79 6.97 4.77

Maximum 0.38 0.38 0.45 0.53 1.33 3.65 8.25

Minimum 25.20 30.05 34.45 40.35 47.35 55.25 62.65

Average volume 1358.20 1983.32 2630.10 3182.80 2441.32 3163.30 4515.67

Average open interest 11739.98 16769.85 18331.39 21581.85 19213.53 18214.70 12526.01

obs. 163 191 199 201 201 204 206

This table presents the descriptive statistics of the S&P500 put options with 1 month expiration.

The first row shows different moneyness from out-of-the-money ( Kp/S = 0.85) to at-the-money

(Kp/S = 1). Kp is the exercise price of the call option and S is the current price of S&P500 index.
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Table 14: Descriptive statistics of different measures of implied volatility, skewness and

kurtosis

Mean Median Std. Dev. Skewness Kurtosis Maximum Minimum

RVD 0.172 0.145 0.101 2.739 14.158 0.784 0.055

VIX 0.217 0.200 0.093 2.460 13.122 0.809 0.102

BSIV 0.219 0.204 0.078 2.994 17.341 0.765 0.130

MFIV 0.209 0.195 0.085 2.460 13.349 0.758 0.103

MFIS -1.035 -1.046 0.342 0.280 2.776 0.117 -1.726

MFIK 5.907 5.417 1.979 0.945 3.565 12.771 2.932

ETIV 0.210 0.194 0.089 2.257 11.343 0.745 0.097

ETIS -1.483 -1.453 0.397 -0.588 3.855 -0.547 -2.988

ETIK 7.873 7.432 2.589 1.554 7.415 21.060 2.368

This table reports the descriptive statistics for volatility measures RVD, VIX, BSIV, MFIV and

ETIV, implied skewness measures MFIS and ETIS and implied kurtosis measures MFIK and

ETIK.Statistics are reported for the full sample from January 1996 to August 2013. In all tables

and figures, the volatility measures are annulized and given in decimal form.

Table 15: Correlation matrix of different option implied risk measures

RVD VIX BSIV MFIV MFIS MFIK ETIV ETIS ETIK

RVD 1.000 0.734 0.735 0.735 0.408 -0.525 0.735 0.237 -0.342

VIX 0.734 1.000 0.994 0.998 0.545 -0.700 0.998 0.192 -0.362

BSIV 0.735 0.994 1.000 0.996 0.566 -0.662 0.993 0.235 -0.381

MFIV 0.735 0.998 0.996 1.000 0.573 -0.714 0.998 0.220 -0.381

MFIS 0.408 0.545 0.566 0.573 1.000 -0.709 0.540 0.752 -0.692

MFIK -0.525 -0.700 -0.662 -0.714 -0.709 1.000 -0.707 -0.341 0.485

ETIV 0.735 0.998 0.993 0.998 0.540 -0.707 1.000 0.183 -0.353

ETIS 0.237 0.192 0.235 0.220 0.752 -0.341 0.183 1.000 -0.913

ETIK -0.342 -0.362 -0.381 -0.381 -0.692 0.485 -0.353 -0.913 1.000

This table reports the correlations for various measures of volatility, skewness and kurtosis. Th

sample period is January 1996 to August 2013.
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Table 16: Volatility Regressions (7 pairs of options)

In-Sample Estimation Out-of-sample RMSE

α β1 β2 β3 adj.R2 All days Low Medium High

RVD 0.052*** 0.673*** 0.474 0.406 0.423 0.483 0.376

(5.219) (13.752)

BSIV -0.027*** 0.916*** 0.542 0.391 0.249 0.485 0.370

(-1.979) (15.765)

VIX -0.002 0.800*** 0.537 0.393 0.242 0.485 0.373

(-0.145) (15.609)

MFIV -0.005 0.817*** 0.539 0.391 0.242 0.487 0.370

(-0.382) (15.649)

ETIV 0.011 0.756*** 0.536 0.391 0.240 0.484 0.371

(0.984) (15.580)

RVD+BSIV -0.016 0.160 0.735*** 0.546 0.391 0.260 0.481 0.370

(-1.055) (1.614) (5.828)

RVD+MFIV 0.002 0.176* 0.639*** 0.543 0.390 0.253 0.482 0.369

(0.193) (1.800) (5.724)

RVD+ETIV 0.015 0.182* 0.585*** 0.542 0.390 0.253 0.479 0.370

(1.312) (1.859) (5.644)

BSIV+MFIV -0.034 1.226 -0.278 0.540 0.406 0.267 0.486 0.390

(-1.352) (1.336) (-0.338)

BSIV+ETIV -0.035 1.125* -0.174 0.540 0.409 0.285 0.481 0.396

(-1.167) (1.665) (-0.310)

ETIV+MFIV -0.005 0.814 0.003 0.536 0.400 0.261 0.486 0.382

(-0.237) (0.998) (0.003)

BSIV+MFIV+ETIV -0.036 1.235 -0.195 -0.084 0.538 0.422 0.278 0.484 0.415

(-1.177) (1.337) (-0.176) (-0.111)

This table presents regression results of forecasting realized volatility using different measures of

volatility. The implied volatility measures are calculated from 7 pairs of options. The sample

period extends from January 1996 to August 2013. All of the regressions are based on monthly

nonoverlap observations. t-statistics are reported in parentheses. The dependent variable is the

realized volatility in the next month defined in equation (24). For out-of-sample analysis, we split

the whole sample into three subsamples by sorting the corresponding BSIV measure in ascending

order. “Low”, “Medium” and “High” represent different volatility regime.
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Table 17: Return Regressions (7 pairs of options)

In-Sample Estimation Out-of-sample RMSE

α β1 adj.R2 All days Low Medium High

V RPBS 0.001 0.348*** 0.045 0.982 1.058 1.010 0.956

(0.146) (3.295)

V RPMF -0.001 0.402*** 0.059 0.973 1.070 1.008 0.939

(-0.169) (3.740)

V RPET -0.001 0.448*** 0.075 0.965 1.073 1.010 0.922

(-0.308) (4.226)

This table presents predictive regression results of variance risk premium on future monthly re-

turn, where variance risk premium is calculated based on 7 pairs of option prices.The sample

period extends from January 1996 to August 2013. All of the regressions are based on monthly

nonoverlap observations. t-statistics are reported in parentheses. V RPBS is the variance risk pre-

mium calculated by the difference between BSIV 2 and realized variance in the last month RVD2.

V RPMF and V RPET are variance risk premium calculated based on MFIV and ETIV.
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Table 18: Volatility Regressions, all options

In-Sample Estimation Out-of-sample RMSE

α β1 β2 β3 adj.R2 All days Low Medium High

RVD 0.052*** 0.673*** - - 0.474 0.406 0.445 0.458 0.382

(5.219) (13.752) - -

BSIV -0.001 0.736*** - - 0.530 0.391 0.313 0.472 0.371

-(0.094) (15.377) - -

VIX -0.002 0.800*** - - 0.537 0.393 0.304 0.468 0.376

-(0.145) (15.609) - -

MFIV 0.009 0.731*** - - 0.543 0.389 0.304 0.470 0.370

(0.762) (15.779) - -

ETIV 0.009 0.767*** - - 0.552 0.386 0.300 0.467 0.366

(0.764) (16.092) - -

RVD+BSIV 0.006 0.217** 0.540*** - 0.539 0.386 0.323 0.462 0.366

(0.516) (2.295) (5.529) -

RVD+MFIV 0.012 0.158 0.589*** - 0.546 0.388 0.312 0.464 0.370

(1.076) (1.589) (5.839) -

RVD+ETIV 0.011 0.119 0.655*** - 0.553 0.386 0.306 0.463 0.368

(0.994) (1.186) (6.168) -

BSIV+MFIV 0.013 -0.260 0.985*** - 0.541 0.392 0.298 0.468 0.376

(0.988) (-0.649) (2.501) -

BSIV+ETIV 0.017 -0.406 1.178*** - 0.553 0.389 0.294 0.466 0.373

(1.281) (-1.222) (3.470) -

MFIV+ETIV 0.012 -1.778** 2.613*** 0.560 0.409 0.297 0.466 0.402

(1.101) (-2.152) (3.042)

BSIV+MFIV+ETIV 0.012*** 0.001 -1.779 2.613*** 0.558 0.414 0.292 0.464 0.410

(7.005) (0.629) (-0.327) (4.141)

This table presents regression results of forecasting realized volatility using different measures

of volatility. The implied volatility measures are calculated from all options. The sample period

extends from January 1996 to August 2013. All of the regressions are based on monthly nonoverlap

observations. t-statistics are reported in parentheses. The dependent variable is the realized

volatility in the next month defined in equation (24). For out-of-sample analysis, we split the

whole sample into three subsamples by sorting the corresponding BSIV measure in ascending

order. “Low”, “Medium” and “High” represent different volatility regime.
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Table 19: Return Regressions (all options)

In-Sample Estimation Out-of-sample RMSE

α β1 adj.R2 All days Low Medium High

V RPBS -0.005 0.416*** 0.067 0.974 1.070 1.005 0.937

(-1.196) (4.002)

V RPMF -0.003 0.435*** 0.069 0.969 1.063 1.003 0.929

(-0.827) (4.059)

V RPET -0.002 0.480*** 0.074 0.962 1.057 1.003 0.918

(-0.423) (4.219)

This table presents predictive regression results of variance risk premium on future monthly return,

where variance risk premium is calculated based on all option prices. The sample period extends

from January 1996 to August 2013. All of the regressions are based on monthly nonoverlap obser-

vations. t-statistics are reported in parentheses. V RPBS is the variance risk premium calculated

by the difference between BSIV 2 and realized variance in the last month RVD2. V RPMF and

V RPET are variance risk premium calculated based on MFIV and ETIV.
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Figure 1: Comparison of estimated distribution by ET and given distributions

(a) Standard normal (b) Skewt(5,-0.3)

(c) Skewt(5,-0.7)

Note: The blue bars are histograms of the given risk neutral distributions of the continuous compounded

return. The red lines are risk neutral densities estimated by principle of maximum entropy.
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Figure 2: Option numbers and strike price range

(a) Number of call and put options

(b) Strike price range of the options
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Figure 3: Comparison of MFIV and ETIV

(a) Difference between ETIV and MFIV

(b) S&P500 index return in the previous month

Note: Blue line is for put options and red line is for call options
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Figure 4: Confidence interval for ETIV

(a) Confidence interval for ETIV

(b) ETIV and length of the confidence interval

Note: Red lines are the upper bound and lower bound of the confidence interval.
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Figure 5: Risk neutral moments from S&P500 index options calculated by maximum entropy

method and model-free method

(a) ETIV and MFIV

(b) ETIS and MFIS

(c) ETIK and MFIK
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